
 1 / 48

Algoritma dan
Pemrograman

Struktur Dasar Program dan Diagram Alur

 2 / 48

Opening Keynote

Jika kamu berusaha tidak belajar,

tidak ada orang yang bisa menolongmu

jika kamu menjadikan diri untuk belajar,

tidak ada yang bisa menghentikan mu.

 3 / 48

Subtopik

● Input-Process-Output pada Program
● Mendesain Flowchart dari suatu algoritma
● Deklarasi dan Pengunan variable ,

konstanta ,ekpresi dan tipe data
● Input/Output
● Sekuens
● Contoh Kasus

 4 / 48

Capaian

● Anda mampu membuat flowchart dari suatu
algoritma penyelesaian masalah tertentu

● Anda mampu memahami pseudo-code dan
mengaplikasikanya

● Anda mampu memahami dan mengunakan
variable , expresi , input dan output.

 5 / 48

Untuk mengikuti rangkaian materi pada slide
ini ada prasyarat yang perlu dipenuhi :

● Interpreter Ruby pada media yang akan anda
gunakan baik komputer , Handphone atau
mengunakan situs daring.

● Saran, gunakan FOSS (Free – Open Source
Software) / Perangkat Lunak Bebas Gratis.

Syarat Material

 6 / 48

Syarat Mental

● Persiapkan mental anda , jadi pelajar yang
proaktif bukan pengemis yang reaktif

● Gunakan Akal dan Daya Kritis anda
● Berasa Ingin tahu dan eksplorasi
● Hadapi masalah , pecahkan serta berani

mengotori tangan sendiri
● Jadila penanya yang cerdas , karena belajar

dan pahami terlebih dahulu yang anda ingin
tanyakan suatu kebermanfaatan.

 7 / 48

Bacaan Lanjutan

● Berfikir Komputasional
● Pseudo-Code dan UML
● Clean Code : DRY , KISS , SOLID , dan lainya
● Struktur Data
● Pemrograman Berorientasi Objek

 8 / 48

 Pemrograman

 9 / 48

Ruby

● Ruby merupakan bahasa pemrograman
General-Purpose dan berparadigma Objek-
Oriented.

● Diciptakan pada tahun 1995 oleh Yukihiro
“Matz” Matsumoto.

● Pada seri pembelajaran ini secara esklusif
mengunakan Ruby.

● Untuk pengunaan dasar kita akan
mengunakan paradigma Prosedural.

● Case Sensitive , besar-kecil huruf
berpengaruh

 10 / 48

Contoh Kerja Program

Input Proses Output

Input A
Input B

A = A+ B
B = A + B

Output A
Output B

A = gets.to_i
B = gets.to_i

Ruby

A = A + B
B = A + B

puts A
puts b

 11 / 48

 12 / 48

Kamus

Algoritma

 13 / 48

Kamus

● Kamus dipakai untuk mendeklarasikan /
menyatakan nama yang digunakan pada
program.

● Deklarasi bukan Instruksi
● Definisi yang diterima :

– Variable
– Konstanta

 14 / 48

Jenis Tipe Data

Setiap data memiliki komponen penyusun
sendiri

● Data Ukuran Sandal berbeda dengan Data
Nama Seseorang

– Data Ukuran Sendal : 38 (terdiri atas
angka)

– Data Nama : Elodia Kartini (terdiri dari
karakter alphabet)

 15 / 48

Jenis Tipe Data

Tipe data primtif /
dasar

● Integer
● Float
● String
● Boolean

Tipe data artifisial /
bentukan dan
turunan

● Tipe data Biodata

– Nama : String
– Umur : Integer
– Sehat : Boolean

 16 / 48

Contoh Tipe Data

– Nama → String , contoh :
“Kartini”,”Niwanputri”

– Tanggal → String , contoh : “21-04-1999”
– Tinggi Badan → Integer / Float , contoh :

165, 165.23
– Berat Badan → Integer / Float , contoh :

42 , 42.23
– Sehat → Boolean, contoh : True / False

 17 / 48

Contoh tipe data komposit

 18 / 48

Variable

● Variable merupakan
tempat menyimpan
data dengan ber-tipe
data sesuai dengan
deklarasi.

● Pada Ruby Deklasi
variable harus
disertai nilai , karena
tipe data Ruby
besifat Loosly Type.

Contoh:

umur = 24
– Variable umur di isi dengan nilai

24
– 24 nilai bertipe integer , maka

tipe data variable umur adalah
integer

nama = “Vina”
– Variable nama disi dengan nilai

“Vina”
– “Vina” bernilai String maka.

Demikian juga tipe data variable
nama.

 19 / 48

Loosly Type

● Pada Ruby tipe data variable ditentukan
dengan tipe data nilai yang diberikan
(assigning). Deklarasi variable pada Ruby
dapat dikatakan Pemberian nilai ketimbang
deklarasi variable.

● Untuk mengetahui tipe data variable yang
sudah terdeklrasi dengan data
mengunakan , .class pada nama variable.
– variable_nama = “Elisabeth Niwanputri”

– variable_nama.class #=> String

 20 / 48

Operasi pada Tipe Data

● Operasi perhitungan seperti +,-,*,/
merupakan operasi untuk melakukan hitungan
dengan angka.

● Tipe data berbeda bukan berarti memiliki arti
yang beda

– “ Ru “ + “ by “ → “Ruby”
● Namun tidak semua operasi dapat digunakan

untuk semua tipe data

– “Aku mandi 0 ” * “Sehari” → ERROR

 21 / 48

Operasi tipe data primitif

Daftar ini namun ini tidak menutup
kemungkinan dari arti operasi itu sendiri.

Interger

– * , / , + , - ,% , < , > , <= , >= ,== ,!=
String

– == , !=
Boolean

– && , || ,!

 22 / 48

Penamaan Variable

● Nama diawali dengan huruf kemudian setelah
di ikuti angka / huruf

– Nama tidak mengandung tanda baca dan
spasi

– Gunakan underscore(_) sebagai pemisah.
● Nama variable mudah dimengerti dan

mengambarkan tujuan data didalamnya.
● Case-Sensitif berpengaruh

 23 / 48

Penamaan Variable

● 13e5ok_L1buR = true
– Penamaan seperti ini tidak bermakna serta salah

● nama_lagu = “Lilac for Anabel Apo11o program“–
– Ini mengambarkan variable berisi data tentang nama lagu

● Apakah penamaan variable dibawah benar ?
– Kucing
– _ikan
– 3
– waktu_siang

 24 / 48

Konstanta

● Konstanta Serupa
dengan Variable ,
namun diawali
dengan Huruf Besar
atau semua Huruf
Besar semua.

● Sekali Konstanta
diberi nilai setelah
nya tidak bisa
diubah.

● Contoh

GOLDEN_RASIO = 1.615

Tuhan = “Tidak ada”

Matahari_Panas = true

 25 / 48

Algoritma

 26 / 48

Algoritma

Dalam Konteks
Umum

– Merupakan suatu
langka-langkah
sistematis yang
digunakan untuk
menyelesaikan
masalah.

Dalam Pemrograman

– Merupakan alur
instruksi dalam
teks algoritmis
program yang
terurut untuk
menyelesaikan
masalah.

 27 / 48

Teks Algoritmis

Yaitu ,
– Perintah dasar

(output/input,assignment)

– Perintah berurut
(Sekuensial)

– Analisis Kasus (jika maka
, kenapa)

– Pengulangan

Kriteria Algoritma
yang baik
– Memiliki Input

● Algoritma memiliki nilai
masuk

– Memiliki Output
● Algoritma memiliki nilai

keluar
– Memiliki Batasan
– Memiliki Kepastian
– Effisien

Riset mandiri
mengenai bagian ini

 28 / 48

Perintah dasar

● Pemberian Nilai
● Perbandingan

– Persamaan (==)
– Pertidaksaaman (!=)

● Operasi relasional
– >= , <= , < , >

● Operasi aritmatika
– * ,/ , + ,-

 29 / 48

Input

● Input pemberian nilai terdapat dua cara
– Assignment

● Contoh:

– tanggal = “20-04-2012”
– Pirantin Inputan

● Contoh:
– nama = gets.to_s

● Untuk menampilkan kelayar dapat dengan
puts atau print.

 30 / 48

Pemberian nilai
(Asignment)

● Pada Ruby deklarasi
variable bersifat
pemberian nilai
(Loosely Type) , jadi
tidak ada variable
tanpa nilai.

● Tanpa Loosely type ,
kita bisa
mendeklarasi
variable , tanpa
inisialisasi nilai.

● Ruas Kiri = Ruas Kanan

– Ruas Kiri
● Harus Variable

– Ruas Kanan
● Harus expressi
● Contoh

– “luas segitiga”
– luas = alas *
tinggi

 31 / 48

Expresi

● Expresi Aritmatika

– 2 * jari_jari_kotak
– A + B

● Expresi Relasional

– A > B
– X != Y

● Expresi Logika

– A && B
– C | | B

 32 / 48

Komentar

● Dalam Bahasa Pemrograman , Komentar
merupakan bagian yang tidak dieksekusi isi
nya
– Bagian ini ditujukan untuk meberikan informasi

tentang keterangan , catatan penting , dan pengingat.

● Dalam Ruby , Komentar dituliskan dengan
– # apa awal baris , kalimat komentar

Contoh
– A = C + D # A untuk Hasil , C dan D dapat

dari input user.

 33 / 48

Aksi Sekuensial

● Aksi sekuensial

– Barisan intruksi / aksi yang dieksekusi
komputer sesuai dengan urutan
penulisanya

● Setiap aksi memiliki dampak ke program

– Setiap aksi haru definitif (memiliki awal
dan akhir yang jelas)

– Instruksi ditulis sesuai urutan

 34 / 48

Contoh Aksi Sekuensial

 35 / 48

Contoh Algoritma

● Persoalan
– Bagaimana menghitung

perkalian dengan
menambahkanya?

● Definisikan Masalah
– Input : angka penambah

dan pengali
– Output : hasil tambahan

● Langkah
penyelesaian
– 1 . baca angka

penambah
– 2 . baca angka pengali
– 3 . Tambahkan angka

penambah berulang
sebanyak angka pengali

 36 / 48

Pseudo-code

● Pseudo-code merupakan struktur kode lojik
yang dengan bahasa lebih manusiawi.

● Tidak ada standar terlalu khusus, biasanya
dalam bahasa yang mudah dipahami atau
notasi matematis

 37 / 48

Contoh Pseudo Code

 38 / 48

Contoh Pseudo code

Penerjemaahan (perubahan)
dari Pseudo-Code ke Ruby code

 39 / 48

Contoh Kasus

● Permasalahan

– Buatlah
penghitung
volume bola

● Definisi Masalah

– Input : Jari – Jari
Bola

– Output : Volume
Bola

 40 / 48

Contoh Kasus (Pseudo)

 41 / 48

Contoh Kasus (Ruby)

Hasil keluaran program :

 42 / 48

Flowchart (Diagram Alur)

Input Variable
 Jari_Jari

Jari_Jari =
 4/3 * PHI

 * Jari_Jari ^ 3

Tampilan kelayar
Jari_Jari

 43 / 48

Kasus Algoritma

● Permasalahan
– Buatlah program

penghitung dari detik
ke jam dan menit.

● Definisi masalah
– Input :

● Detik (Integer)
– Output

● Menit (Integer)
● Jam (Integer)

– Latihan
● Bentuk dalam

Pseudo-code

● Bentuk dalam
bahasa Ruby

 44 / 48

Memulai Ruby dengan
Script

● Buka text editor kalian bebas.
● Contoh ini pakai Vim. Dan simpan pada direktori

tertentu dengan akhiran .rb

 45 / 48

Memulai Ruby dengan
Script

● Jalan pada terminal , “ ruby <alamat/nama
script kalian>.rb “

 46 / 48

Closing Keynote

Pengetahuan itu tak terbatas.

– ConneR

“Kita tidak bisa mengatur angin , tapi kita
bisa menaru jangkar “ – Irish Proverb

 47 / 48

Terima Kasih

 48 / 48

Dalam nama perjuangan

● Materi ini dibuat sebagai bentuk perlawanan
terhadap komersialisasi pendidikan dan
pengendalian informasi

● Menjunjung kebebasan informasi dan
pencerdasan umum

● Hak cipta bebas merdeka , setiap orang
dianjurkan dan dinasehatkan untuk
mengopi ,mencetak , mengganda, menyebar
isi serta materi – materi didalamnya.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

