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Algoritma dan 
Pemrograman

Struktur Dasar Program dan Diagram Alur
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Opening Keynote

Jika kamu berusaha tidak belajar, 

tidak ada orang yang bisa menolongmu

jika kamu menjadikan diri untuk belajar,

tidak ada yang bisa menghentikan mu.
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Subtopik

● Input-Process-Output pada Program
● Mendesain Flowchart dari suatu algoritma
● Deklarasi dan Pengunan variable , 

konstanta ,ekpresi dan tipe data
● Input/Output
● Sekuens
● Contoh Kasus
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Capaian

● Anda mampu membuat flowchart dari suatu  
algoritma penyelesaian masalah tertentu

● Anda mampu memahami pseudo-code dan 
mengaplikasikanya

● Anda mampu memahami dan mengunakan 
variable , expresi , input dan output.
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Untuk mengikuti rangkaian materi pada slide 
ini ada prasyarat yang perlu dipenuhi :

● Interpreter Ruby pada media yang akan anda 
gunakan baik komputer , Handphone atau 
mengunakan situs daring.

● Saran, gunakan FOSS ( Free – Open Source 
Software ) / Perangkat Lunak Bebas Gratis.

Syarat Material
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Syarat Mental

● Persiapkan mental anda , jadi pelajar yang 
proaktif bukan pengemis yang reaktif

● Gunakan Akal dan Daya Kritis anda
● Berasa Ingin tahu dan eksplorasi
● Hadapi masalah , pecahkan serta berani 

mengotori tangan sendiri
● Jadila penanya yang cerdas , karena belajar 

dan pahami terlebih dahulu yang anda ingin 
tanyakan suatu kebermanfaatan.
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Bacaan Lanjutan

● Berfikir Komputasional
● Pseudo-Code dan UML
● Clean Code : DRY , KISS , SOLID , dan lainya
● Struktur Data
● Pemrograman Berorientasi Objek
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 Pemrograman



  9 / 48

Ruby

● Ruby merupakan bahasa pemrograman 
General-Purpose dan berparadigma Objek-
Oriented.

● Diciptakan pada tahun 1995 oleh Yukihiro 
“Matz” Matsumoto.

● Pada seri pembelajaran ini secara esklusif 
mengunakan Ruby.

● Untuk pengunaan dasar kita akan 
mengunakan paradigma Prosedural.

● Case Sensitive , besar-kecil huruf 
berpengaruh
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Contoh Kerja Program

Input Proses Output

Input A
Input B

A = A+ B
B = A + B

Output A
Output B

A = gets.to_i
B = gets.to_i

Ruby

A =  A + B
B = A + B

puts A
puts b
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Kamus

Algoritma
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Kamus

● Kamus dipakai untuk mendeklarasikan / 
menyatakan nama yang digunakan pada 
program.

● Deklarasi bukan Instruksi
● Definisi yang diterima :

– Variable
– Konstanta
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Jenis Tipe Data

Setiap data memiliki komponen penyusun 
sendiri

●  Data Ukuran Sandal berbeda dengan Data 
Nama Seseorang

– Data Ukuran Sendal : 38 ( terdiri atas 
angka)

– Data Nama : Elodia Kartini ( terdiri dari 
karakter alphabet )
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Jenis Tipe Data

Tipe data primtif / 
dasar

● Integer
● Float
● String
● Boolean

Tipe data artifisial / 
bentukan dan 
turunan

● Tipe data Biodata

– Nama : String
– Umur : Integer
– Sehat : Boolean



  16 / 48

Contoh Tipe Data

– Nama → String , contoh : 
“Kartini”,”Niwanputri”

– Tanggal → String , contoh : “21-04-1999”
– Tinggi Badan → Integer / Float , contoh : 

165, 165.23
– Berat Badan → Integer / Float , contoh : 

42 , 42.23
– Sehat  → Boolean, contoh : True / False
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Contoh tipe data komposit
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Variable

● Variable merupakan 
tempat menyimpan 
data dengan ber-tipe 
data sesuai dengan 
deklarasi.

● Pada Ruby Deklasi 
variable harus 
disertai nilai , karena 
tipe data Ruby 
besifat Loosly Type.

Contoh:

umur = 24
– Variable umur di isi dengan nilai 

24
– 24 nilai bertipe integer , maka 

tipe data variable umur adalah 
integer

nama = “Vina”
– Variable nama disi dengan nilai 

“Vina”
– “Vina” bernilai String maka. 

Demikian juga tipe data variable 
nama.
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Loosly Type

● Pada Ruby tipe data variable ditentukan 
dengan tipe data nilai yang diberikan 
(assigning). Deklarasi variable pada Ruby 
dapat dikatakan Pemberian nilai ketimbang 
deklarasi variable.

● Untuk mengetahui tipe data variable yang 
sudah terdeklrasi dengan data 
mengunakan , .class pada nama variable.
– variable_nama = “Elisabeth Niwanputri”

– variable_nama.class #=> String
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Operasi pada Tipe Data

● Operasi perhitungan seperti +,-,*,/  
merupakan operasi untuk melakukan hitungan 
dengan angka.

● Tipe data berbeda bukan berarti memiliki arti 
yang beda 

–  “ Ru “ + “ by “ → “Ruby”
● Namun tidak semua operasi dapat digunakan 

untuk semua tipe data

– “Aku mandi 0 ” * “Sehari” → ERROR
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Operasi tipe data primitif

Daftar ini namun ini tidak menutup 
kemungkinan dari arti operasi itu sendiri.

Interger

–  * , / , + , - ,% , < , > , <= , >= ,== ,!=
String

–  == , !=  
Boolean

– && , || ,! 
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Penamaan Variable

● Nama diawali dengan huruf kemudian setelah 
di ikuti angka / huruf

– Nama tidak mengandung tanda baca dan 
spasi

– Gunakan underscore(_) sebagai pemisah.
● Nama variable mudah dimengerti dan 

mengambarkan tujuan data didalamnya.
● Case-Sensitif berpengaruh
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Penamaan Variable

● 13e5ok_L1buR = true
– Penamaan seperti ini tidak bermakna serta salah

●  nama_lagu = “Lilac for Anabel  Apo11o program“–
– Ini mengambarkan variable berisi data tentang nama lagu

● Apakah penamaan variable dibawah benar ?
– Kucing
– _ikan
– 3
– waktu_siang
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Konstanta

● Konstanta Serupa 
dengan Variable , 
namun diawali 
dengan Huruf Besar 
atau semua Huruf 
Besar semua.

● Sekali Konstanta 
diberi nilai setelah 
nya tidak bisa 
diubah.

● Contoh

GOLDEN_RASIO = 1.615

Tuhan = “Tidak ada”

Matahari_Panas = true
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Algoritma
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Algoritma

Dalam Konteks 
Umum

– Merupakan suatu 
langka-langkah 
sistematis yang 
digunakan untuk 
menyelesaikan 
masalah.

Dalam Pemrograman

– Merupakan alur 
instruksi dalam 
teks algoritmis 
program yang 
terurut untuk 
menyelesaikan 
masalah.
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Teks Algoritmis

Yaitu ,
– Perintah dasar 

(output/input,assignment)

– Perintah berurut 
( Sekuensial )

– Analisis Kasus ( jika maka 
, kenapa)

– Pengulangan

Kriteria Algoritma 
yang baik
– Memiliki Input

● Algoritma memiliki nilai 
masuk

– Memiliki Output
● Algoritma memiliki nilai 

keluar
– Memiliki Batasan
– Memiliki Kepastian
– Effisien

Riset mandiri 
mengenai bagian ini
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Perintah dasar

● Pemberian Nilai
● Perbandingan 

– Persamaan ( == ) 
– Pertidaksaaman ( != )

● Operasi relasional 
– >= , <= , < , >

● Operasi aritmatika
– * ,/ , + ,-
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Input

● Input pemberian nilai terdapat dua cara
– Assignment 

● Contoh:

– tanggal = “20-04-2012”
– Pirantin Inputan

● Contoh:
– nama = gets.to_s

● Untuk menampilkan kelayar dapat dengan 
puts atau print.



  30 / 48

Pemberian nilai 
(Asignment)

● Pada Ruby deklarasi 
variable bersifat 
pemberian nilai 
(Loosely Type) , jadi 
tidak ada variable 
tanpa nilai.

● Tanpa Loosely type , 
kita bisa 
mendeklarasi 
variable , tanpa 
inisialisasi nilai.

● Ruas Kiri = Ruas Kanan

– Ruas Kiri
● Harus Variable

– Ruas Kanan
● Harus expressi
● Contoh

– “luas segitiga”
– luas = alas * 
tinggi
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Expresi

● Expresi Aritmatika

– 2 * jari_jari_kotak
– A + B

● Expresi Relasional 

– A > B
– X != Y

● Expresi Logika

– A && B
– C | | B
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Komentar

● Dalam Bahasa Pemrograman , Komentar 
merupakan bagian yang tidak dieksekusi isi 
nya
– Bagian ini ditujukan untuk meberikan informasi 

tentang keterangan , catatan penting , dan pengingat.

● Dalam Ruby , Komentar dituliskan dengan
– # apa awal baris , kalimat komentar

Contoh
– A = C + D # A untuk Hasil , C dan D dapat 

dari input user.
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Aksi Sekuensial

● Aksi sekuensial

– Barisan intruksi / aksi yang dieksekusi 
komputer sesuai dengan urutan 
penulisanya

● Setiap aksi memiliki dampak ke program

– Setiap aksi haru definitif ( memiliki awal 
dan akhir yang jelas )

– Instruksi ditulis sesuai urutan
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Contoh Aksi Sekuensial
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Contoh Algoritma

● Persoalan
– Bagaimana menghitung 

perkalian dengan 
menambahkanya?

● Definisikan Masalah
– Input : angka penambah 

dan pengali
– Output : hasil tambahan

● Langkah 
penyelesaian
– 1 . baca angka 

penambah
– 2 . baca angka pengali
– 3 . Tambahkan angka 

penambah berulang 
sebanyak angka pengali
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Pseudo-code

● Pseudo-code merupakan struktur kode lojik 
yang dengan bahasa lebih manusiawi.

● Tidak ada standar terlalu khusus, biasanya 
dalam bahasa yang mudah dipahami atau 
notasi matematis
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Contoh Pseudo Code
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Contoh Pseudo code

Penerjemaahan ( perubahan ) 
dari Pseudo-Code ke Ruby code
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Contoh Kasus

● Permasalahan

– Buatlah 
penghitung 
volume bola

● Definisi Masalah

– Input : Jari – Jari 
Bola

– Output : Volume 
Bola
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Contoh Kasus ( Pseudo )
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Contoh Kasus ( Ruby )

Hasil keluaran program :
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Flowchart ( Diagram Alur )

Input Variable
 Jari_Jari

Jari_Jari =
 4/3 * PHI

 * Jari_Jari ^ 3

Tampilan  kelayar
Jari_Jari
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Kasus Algoritma

● Permasalahan
– Buatlah program 

penghitung dari detik 
ke jam dan menit.

● Definisi masalah
– Input : 

● Detik ( Integer)
– Output

● Menit ( Integer )
● Jam ( Integer )

– Latihan
● Bentuk dalam 

Pseudo-code

● Bentuk dalam 
bahasa Ruby
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Memulai Ruby dengan 
Script

● Buka text editor kalian bebas.
● Contoh ini pakai Vim. Dan simpan pada direktori 

tertentu dengan akhiran .rb
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Memulai Ruby dengan 
Script

● Jalan pada terminal , “ ruby <alamat/nama 
script kalian>.rb “
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Closing Keynote

Pengetahuan itu tak terbatas. 

– ConneR

“Kita tidak bisa mengatur angin , tapi kita 
bisa menaru jangkar “ – Irish Proverb
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Terima Kasih
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Dalam nama perjuangan

● Materi ini dibuat sebagai bentuk perlawanan 
terhadap komersialisasi pendidikan dan 
pengendalian informasi

● Menjunjung kebebasan informasi dan 
pencerdasan umum

● Hak cipta bebas merdeka , setiap orang 
dianjurkan dan dinasehatkan untuk 
mengopi ,mencetak , mengganda, menyebar 
isi serta materi – materi didalamnya.
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